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1 INTRODUCTION 

Infrastructure networks supplying electricity, natural gas, water, and other commodities are at 
risk of disruption due to well-engineered and coordinated terrorist attacks. Countermeasures such 
as hardening targets, acquisition of spare critical components, and surveillance can be undertaken 
to detect and deter these attacks. Allocation of available countermeasures resources to sites or 
activities in a manner that maximizes their effectiveness is a challenging problem. This allocation 
must take into account the adversary’s response after the countermeasure assets are in place and 
consequence mitigation measures the infrastructure operation can undertake after the attack. The 
adversary may simply switch strategies to avoid countermeasures when executing the attack. 
Stockpiling spares of critical energy infrastructure components has been identified as a key 
element of a grid infrastructure defense strategy in a recent National Academy of Sciences report 
[1].

Consider a scenario where an attacker attempts to interrupt the service of an electrical network by 
disabling some of its facilities while a defender wants to prevent or minimize the effectiveness of 
any attack. The interaction between the attacker and the defender can be described in three 
stages:

1) The defender deploys countermeasures,
2) The attacker disrupts the network, and 
3) The defender responds to the attack by rerouting power to maintain service while trying to 

repair damage.

In the first stage, the defender considers all possible attack scenarios and deploys 
countermeasures to defend against the worst scenarios. Countermeasures can include hardening 
targets, acquiring spare critical components, and installing surveillance devices. In the second 
stage, the attacker, with full knowledge of the deployed countermeasures, attempts to disable 
some nodes or links in the network to inflict the greatest loss on the defender. In the third stage, 
the defender re-dispatches power and restores disabled nodes or links to minimize the loss. The 
loss can be measured in costs, including the costs of using more expensive generators and the 
economic losses that can be attributed to loss of load. 

The defender’s goal is to minimize the loss while the attacker wants to maximize it. Assuming 
some level of budget constraint, each side can only defend or attack a limited number of network 
elements. When an element is attacked, it is assumed that it will be totally disabled. It is assumed 
that when an element is defended it cannot be disabled, which may mean that it will be restored 
in a very short time after being attacked.

The rest of the paper is organized as follows. Section 2 will briefly review literature related to 
multilevel programming and network defense. Section 3 presents a mathematical formulation of 
the electrical network defense problem. Section 4 describes the solution algorithms. Section 5 
discusses computational results. Finally, Sec. 6 explores future research directions. 



UCRL-TR-201959

Lawrence Livermore National Laboratory 4 December 2003

2 LITERAT URE REVIEW

The infrastructure network defense problem can be formulated as a tri-level optimization model, 
which is an extension of the bi-level program or Stackelberg game [2, 3]. In the two-stage game, 
a leader acts first to deploy countermeasures; then a follower in the game observes the 
countermeasure deployment and chooses a strategy with maximal system impact. 

Algorithms have been developed to address instances of the bi-level programming problem [4-
14]. Bard, Moore, and Edmunds replace the bi-level program by an equivalent single-level 
nonlinear program using Kuhn-Tucker optimality conditions [4, 5, 12]. The equivalent nonlinear 
optimization problem is then solved with a branch and bound scheme, where each branch 
corresponds to a complementary slackness condition. Israeli and Wood use Bender’s 
decomposition and set covering methods to solve bi-level linear programs in which only the 
upper bound of the follower’s objective function is affected by the leader’s decisions [13, 14]. 
Israeli and Wood have extended their solution algorithm to tri-level linear programs with special 
properties. 

Salmeron, Wood, and Baldick [15] formulate the electrical network interdiction problem (the 
attacker’s problem) as a bi-level program. Their formulation differs from Israeli and Wood’s in 
that the leader’s decision will affect not only the upper bounds but also other constraints in the 
follower’s problem. They develop heuristics to generate good solutions to the bi-level program 
by approximating the leader’s objective with a penalty function generated from the solution to 
the follower’s problem. The heuristic does not guarantee an optimal solution.

This paper extends Salmeron, Wood, and Baldick’s bi-level model to a tri-level one in 
formulating the electrical network defense problem. The algorithm generates an optimal solution 
to the tri-level programming problem.

3 PROBLEM FORMULATION

As shown in Section 1, the electrical network defense problem consists of three stages or levels. 
This section will present the mathematical formation for this problem level by level, starting with 
the last one.

3.1  Optimal Power Flow

To mitigate the impact of an attack, the defender needs to produce and distribute power with the 
undamaged generators and transmission facilities. The objective is to minimize the generation 
cost and the cost due to unmet demands. This is an AC optimal power flow (OPF) problem, 
which is nonlinear. It is common practice in electric utility management to use a linear 
approximation of the AC OPF problem for reliability and planning purposes [19]. That is the 
approach taken in this paper.

The objective function, which reflects costs of operation and unmet demands, can be expressed 
as
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∑
∈

=
DGi

ii zcf
,

(1)

where
zi  is a variable representing power flow from a generator or along a transmission line, the 

phase angle at a bus, or the unmet amount of a demand,
ci denotes the unit cost associated with zi,

G is the set of indices of all variables for power from generators, and
D is the set of indices of all variables for unmet demands.

There are several sets of constraints. The first one describes the power-flow and phase angle 
relationship:

( ) ( )( ) 0     i i o i t iz B z z i Lθ θ− − = ∀ ∈ (2)

where L is the set of indices of all variables for line power flows,
Bi is susceptance for line i, 
θo (i) is the variable index for the phase angle at the bus where line i originates, and
θt (i) is the variable index for the phase angle at the bus where line i terminates.

The second set of constraints provides lower and upper bounds for the variables:

     , , ,i i il z u i A D G L≤ ≤ ∀ ∈  (3)

where A is the set of indices of all phase angles variables.

More specifically, variables in different sets are limited by the following lower and upper 
bounds.

, ,    i il u i Aπ π= − = ∀ ∈
0, ,      i i il u d i D= = ∀ ∈
0, ,      i i il u p i G= = ∀ ∈

, ,    i i i il p u p i L= − = ∀ ∈

where id is the power requirement at a demand point and ip represents the capacity of a 

generator or a transmission line.

Finally, there are constraints for conservation of flows: 

( ) ( ) ( ) ( ) ( )t o

i i i i i
i G b i L b i L b i D b i D b

z z z z d b B
∈ ∈ ∈ ∈ ∈

+ − + = ∀ ∈∑ ∑ ∑ ∑ ∑ (4)

where B includes all buses,
G(b) is the index set for all generators at bus b,
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D(b) is the index set for all demands at bus b,
Lo(b) is the index set for all lines originating at bus b,
Lt(b) is the index set for all lines terminating at bus b, and
di is the demand for real power at bus i.

In summary, the defender’s response model is an OPF problem.

(OPF)

min f(z)
z

subject to: (2) to (4)

3.2  Attacker’s Problem

The attacker will decide which network element to attack. Let yi = 1 if element i is attacked and yi

= 0 if it is not. The attacker’s decision will impact the optimal power flow (OPF) model. Two 
sets of equations in problem OPF need to be modified. Equations (2) will become

( ) ( )
( )

(1 ) ( ) 0     j i i o i t i
j J i

y z B z z i Lθ θ
∈

− − − = ∀ ∈∏ (5)

where J(i) is the set of indices of yi’s that can make zi = 0.

Equations (3) will become

( ) ( )

(1 ) (1 )      , , ,j i i j i
j J i j J i

y l z y u i A D G L
∈ ∈

− ≤ ≤ − ∀ ∈∏ ∏ (6)

For convenience, (6) has included phase angles ),( Aizi ∈∀  and unmet demands ),( Dizi ∈∀ . 

These variables cannot be directly affected by the attacker; however (6) will still be true if the 
corresponding yi’s are fixed at zero.

The parameterized optimal power flow model is as follows.

  OPF(y) = min f(z)
z

     subject to: (4) to (6)

The attacker is limited by a budget.

∑
∈∀

≤
Jj

jj cyp (7)

where  J is the set of indices of all variables representing an attackable element,
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pj is the amount of resources needed to attack element j, and
c is total amount of available resources.

There are a number of logical relationships between attack variables that are reasonable to 
presume [15]. The first is that an attacker could disable all lines on a given tower by destroying 
the tower, and therefore in an optimal solution only one yj needs to be one in a set of yj’s for a 
group of parallel lines.

1≤∑
∩∈ paralellLj

j
y

y for all groups of parallel lines (8)

where Ly represents all attackable elements in the set L. In general, the superscript y will denote a 
subset for all attackable elements from a corresponding set in the optimal flow model. 

The second set of constrains is
1     ( ),  y y

g by y g G b b B+ ≤ ∀ ∈ ∀ ∈  (9)

Equations (9) impose the logic that yg and yb cannot both be 1 in an optimal solution since 
attacking a bus will disable all generators attached to it. Similar constraints follow. 

1     ( ), ( ),y y y
l by y l Lo b Lt b b B+ ≤ ∀ ∈ ∀ ∈  (10)

Equations in (10) make sure that yl and yb cannot both be 1 in an optimal solution since attacking 
a bus will disable its lines as well.

1     ,y y
b sy y b B s S+ ≤ ∀ ∈ ∀ ∈ (11)

where Sy represents all attackable substations. Equations (11) reflect the fact that ys and yb cannot 
both be 1 in an optimal solution since attacking a substation will disable all of its buses.

The attacker’s problem can be formulated as follows:

max OPF(y)
y

subject to: (7)-(11)

Expanding OPF(y), we have an explicit bi-level model for the attacker’s problem.

(AP)
max OPF(y)
y

subject to (7)-(11)
OPF(y) = min f(z)

z
subject to: (4) to (6)
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Note that the problem is nonlinear due to the multiplicative terms in (5) and (6) of OPF(y).

3.3  Defender’s Problem

The decision whether or not to defend a network element can be represented by a binary variable, 
xk, where xk = 1 if the element is defended, and xk = 0 otherwise. The defender’s decision impacts 
the attacker through the following set of constraints:

Jjxy
jKk

kj ∈∀−≤ ∏
∈ )(

)1( (12)

where K(j) is the set of all elements required for the attackable element j to function.

The parameterized attacker’s problem is as follows:

AP(x) = max OPF(y)
y

subject to: (7) to (12)

Like the attacker, the defender also has a budget constraint:

∑
∈∀

≤
Kk

kk bxq (13)

where K is the set of indices of all variables representing a defendable element,
qk is the amount of resources needed to defend element k, and
b is total amount of available resources.

There are two sets of logical constraints for the defender’s problem. The following one is similar 
to (8).

1
x

k
k L parallel

x
∈ ∩

≤∑ for all group of parallel lines (14)

where Lx represents all defendable elements in the set L. In general, the superscript x will denote 
a subset for all defendable elements from a corresponding set in the optimal flow model. 

The next constraint set is similar to (11).

1     ,x x
b sx x b B s S+ ≤ ∀ ∈ ∀ ∈ (15)

where Sx represents all defendable substations. Equations (15) impose the logic that xs and xb

cannot both be 1 in an optimal solution since defending a substation implicitly means that all of 
its buses will be defended as well.  
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The complete model for the defender’s problem is

Min AP(x)
x

subject to: (13) to (15)

Expanding AP(x), we have an explicit tri-level formulation of the defender’s problem.

(DP)
Min AP(x)
x

subject to: (13) to (15)
AP(x) = max OPF(y)

y
subject to: (7) to (12)

OPF(y) = min f(z)
z

subject to: (4) to (6)

4 SOLUTION METHODS

The tri-level optimization model for electrical network defense can be viewed as a nested bi-level 
optimization model. Each of the bi-level problems is solved with a set packing/covering 
approach that is similar to the set covering based scheme in [13]. This approach is valid under the 
following assumption.

Assumption 1: The optimal power flow (OPF) model is always feasible for any feasible 
defense/attack plan.

This assumption is not an issue for our purpose since the OPF model can always be made 
feasible by introducing appropriate variables to represent unmet demands. In game theory terms, 
Assumption 1 guarantees that the inducible region is nonempty.

In this section, we will describe a set packing/covering solution, followed by enhancements in 
several algorithmic steps. First consider the interaction between the attacker and the defender. 
Without any defense (x0 = 0), the attacker would find the best attack plan, y0(x0) that inflicts the 
greatest possible loss on the defender. The defender can avoid the maximum loss by “covering” 
the attacker’s plan, y0(x0). This can be accomplished the following constraint or cut:

∑
∈∀

≥
)(1 0

1
yKk

kx (16)

where K1(y0) contains all the indices of x0 with their corresponding components of y0 equal to 
one. The defender must set at least one the xk’s in (16) to 1 in the next defense plan, x1, the 
attacker will derive the new attack plan y1(x1), and a new cut will be created to cover y1(x1):

∑
∈∀

≥
)(1 1

1
yKk

kx (17)
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Now the defender’s problem has to satisfy both (16) and (17), in additional to (13), (14), and 
(15). The procedure will continue until not all cuts can be satisfied along with the other 
constraints; i.e. the defender cannot cover all attack plans proposed due to the defender’s budget 
constraint. At this point, an optimal solution is found. This solution procedure will converge to 
an optimal solution in a finite number of steps since there are only a limited number of possible 
attack plans to cover.

In subsection 4.1, we provide an example to demonstrate the solution method. Subsection 4.2 
describes the solution algorithm. The last two subsections will discuss special algorithms used in 
each of the steps in details.

4.1  A Simple Example

Consider an electric power grid with only three attackable components: a substation and two 
buses of equal value (denoted bus 1 and bus 2). Note that the substation is independent of the two 
buses, i.e. defending the substation will not simultaneously protect the buses. The defender has 3 
units of resource to protect the grid while the attacker has 4 units of resource to attack it. 
Defending the substation requires three resources versus two resources for a single bus. The 
damage costs are five units for losing units of the substation and three units for losing an 
individual bus.

Table 1 Example Parameters

available 
resources

Defender 3 units
Attacker 4 units

Component Damage Attack/Defend 
Resources

Substation 5 3
Bus 1 3 2
Bus 2 3 2

Below, we describe how the algorithm would proceed on this simple example.

Round 1
Attacker 

Initially, the attacker seeks to maximize the amount of damage he inflicts. In so 
doing, he chooses to use all of his resources to attack bus 1 and bus 2, inflicting 
damage of six units.

Defender
The defender must then defend the network to minimize this maximum attack 
strategy. The defender chooses to use two of his resources to defend bus 1. 
Alternatively, he could have chosen to defend bus 2 since they are independent 
and virtually identical. Thus, the total damage has been reduced from six units to 
three units.
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Round 2

Attacker
In the second iteration, the attacker again wishes to maximize damage. Since the 
defender chose to defend one of the buses, the attacker alters his strategy and 
attacks the substation, inflicting five units of damage at a cost of three resources.

Defender
In response, the defender attempts to obviate this attack and attempts to protect 
the substation at a cost of three resources. However, this defense is impossible, as 
the defender would exceed his budget or resource constraint.  

Thus, the game terminates since the defender’s problem has become infeasible. From Round 1, 
the defender will protect bus 1 (or bus 2, but not both) to prevent six units of damage. However, 
the attacker will then choose to attack the substation to inflict five units of damage. The whole 
process is summarized in the following table.

Table 2 Attack/Defense Game Summary

Attacker Defender
Strategy Damage 

inflicted
Resources 

used
Strategy Damage 

inflicted
Resources 

used
Round 1 Attack bus 1 

& bus 2
6 4 Defend bus 1 3 2

Round 2 Attack 
substation

5 3 (Defend 
bus 1 & sub)

(0) (2+3)

*Note that the defender’s move in Round 2 is in parenthesis to denote that this move is infeasible.

It might seem surprising that the defender would choose to protect a single bus and “waste” a 
resource rather than defend the substation and prevent five units of damage. However, it is 
important to remember that the defender’s goal is to interdict the attacker’s optimal strategy, 
which in this case would be to attack both buses resulting in six units of damage.

This simple example also provides some insight into possible sensitivity analyses. For instance, 
we might like to know how the solution would have changed if the defender had had more 
resources. By evaluating the reduction in damage, we could find a shadow price for the 
defender’s resources.  Such an analysis might prove useful in real-world applications. 

4.2  Solution algorithms

The algorithmic steps of the solution procedure are as follows. 

Algorithm DP(DP, x*, f*)
Input: defender’s problem, DP
Output: optimal defender’s plan, x* with an associated objective function value f*

Initialization: Construct relaxed defender’s problem RDP(x): find x that satisfies (13) to (15)
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Set the optimal defense objective value, .* ∞=f
Set s = 0; x0 = 0

Step 1: Solve the attacker’s problem AP(xs) with Algorithm AP(AP(xs), ys, fs).
Step 2:If fs< f* , set x*  = xs and f*  = fs.
Step 3:Add the following cut to RDP(x):

∑
∈∀

≥
)(1

1
ytKk

kx (18)

Step 4:Set s = s+1.
Step 5:Solve RDP(x). If it is feasible, let the solution be xs and go to Step 1.
Step 6:An optimal solution has been found; x* is an optimal defense plan with objective value of 

f*; and y* is the optimal attack plan associated with x*.

Algorithm AP is used in step 1 to solve the attacker’s problem:

Algorithm AP(AP( x),  y*, f*)
Input: AP(x), the attacker’s problem with a given defense plan x.
Output: optimal attack plan y* with an associated objective function value of value f*.

Initialization: Construct relaxed attacker’s problem
RAP(y): find y that satisfies (7) to (12)
Set the optimal attack objective value .* −∞=f , 
Step : Set t = 0; y0 = 0

Step 1: Solve OPF(yt) as a linear program and let the objective function value be ft

Step 2:If ft > f*, set y* = yt and f* = ft

Step 3:Add the following cut to RAP(y):

∑
∈∀

≥
)(1

1
ztKk

ky (19)

Step 4:Set t = t+1.
Step 5:Solve RAP(y). If it is feasible, let the solution be yt and go to Step 1.
Step 6: (An optimal solution, y*, has been found.) Return y* and f*.

In Algorithms DA and AP, most computation involves the solutions of three models, OPF in step 
1 of AD, and RDP and RAP in step 5 of both DA and AD. The OPF model is a linear program, 
and both RDP and RAP models are integer programs. All of the models have special properties 
we exploit to improve computational efficiency. 
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4.3  Solution of Optimal Power Flow Model

Iteration t of Algorithm AP produces a parameterized OPF problem, OPF(yt). If ∏
∈

−
)(

)1(
iJj

jy = 0 

in (5), zi is free, and the corresponding constraint can be removed; otherwise the constraint will 
remain in the problem. If ∏

∈
−

)(

)1(
iJj

jy  = 0 in (6), zi is fixed at 0; otherwise, it can change within 

the lower and upper bounds. Obviously, OPF(yt) differs from OPF(yt-1) only in the number of 
constraints of type (5) and in the bounds of the zi’s. To reduce computational effort, we used the 
dual simplex method to solve OPF(yt) starting from the solution to OPF(yt-1) except for t = 0.

To speed up Algorithm AP, we also attempted to use the following theorem [14].

Suppose, zb is a feasible basic solution to OPF, then the following constraint can be added to 
RAP without changing the optimal solution as long as f(zb) <= f* (the best optimal objective 
function value found so far).

∑
∈∀

≥
)(1

1
zbKk

ky (19)

An attempt was made to generate as many cuts as possible while solving OPF(y). However, 
almost all the cuts obtained this way were the same because all zb’s have the same non-zero 
components. This can be attributed to two factors: (1) the incremental dual simplex method tends 
to go through only a few of the feasible extreme points in a neighborhood of the previous optimal 
solution and they have the same non-zero decision variables, and (2) the LP solver we used, 
COIN CLP [17] makes the LP problem feasible close to the optimal solution. As a result, the 
attempt to generate many cuts in one solution of OPF was abandoned.

4.4  Solution of Set Packing/Covering Problem

Both the relaxed attacker’s problem (RAP) and the relaxed defender’s problem (RDP) are integer 
programs with special characteristics. Besides resource constraints (7) and (13) and lower and 
upper bounds, they have two types of constraints: set packing constraints (8)-(11) and (14)-(15) 
and set covering constraints (18) and (19). In this section we present algorithms to solve these Set 
Packing/Covering (SPC) problems.

The SPC problem can be solved as an integer program (IP) with a branch-and-bound algorithm. 
However, a generic IP algorithm does not exploit the special structure of the SPC problem. As 
new set covering constraints are added in the solution procedure as described in Sec. 4.1, more 
time is required to solve the SPC problem. Tests show that the IP algorithm approach is not fast 
enough for even small problems.

Israeli and Wood outline another approach [14]. In this approach, the SCP problem is first 
attacked by a simple, greedy heuristic; if it fails to find a feasible solution, the problem is solved 
with a generic IP algorithm (Greedy-then-IP). We used a greedy algorithm that is a modified 
version of an approximation algorithm for set covering [16]. The modification was made to 
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handle the set packing constraints. Testing showed that the Greedy-then-IP approach was more 
than three times faster than the generic IP algorithm.

To take advantage of the special properties of the SPC problem, we have developed an 
enumerative algorithm (ENUM-SPC) to search for a feasible solution or to prove its infeasibility. 
The search space is pruned by the budgetary and packing constraints. We describe the ENUM-
SPC algorithm below.

Algorithm ENUM -SPC(SPC, x*)
Input: a set packing/covering (SPC) problem.
Output: a feasible solution to SPC, x* or an indicator (x* = 0) that the problem is

infeasible.

Initialization: Arrange xj’s in non-decreasing order of their resource requirements (i.e., if k > j, 
then ck >= cj) and ignore all xj’s with cj > b, the total amount of available 
resources. Assume that there are n variables remaining after the arrangement.

Compute the maximum search depth, 



=

1c

b
D

where c1 is the first and minimum of the cj’s.

The algorithm will try to find a non-zero variable for each level, up to level D. Let 
NL be a list of the indices of the non-zero variables.

Given non-zero variables for all of the previous levels, a level will have a max 
index, m, such that xj must be 0 for all j > m because of the resource constraint.
Let ML be a list of the max indices.

Set current search level, d = 1;
NL(1) = 1; ML(1) = n.

Step 1:status = Forward(D, d, NL, ML).
Step 2:If status = “solution found,” go to 6
Step 3:Backward(d, NL, ML).
Step 4:If d > 0, go to step 1.
Step 5:The problem is infeasible; x*  = 0.
Step 6:For all j, set xj = 1 if j NL∈ , otherwise, xj = 0; x* = x.

Algorithm Forward (D, d, NL, ML)
Input: D – max search depth

d – current search level
NL – list of indices of non-zero variables for levels up to d
ML – list of max indices for levels up to d

Output: status (indicator on whether a feasible solution has been found) and updated d, 
NL and ML.
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Compute resources used on levels up to d, ∑
=

=
d

j
jcr

1

Reduce the size of NL and ML to d.

//Find a level where a variable can be set to one.
For level = d + 1 to D

))(()()1(|min( SPNLjbrcNLjnjji j ∈∪∩<=+∩∉∩≤≤=
 (SP – convex set defined the packing constraints)

    If i exists
        NL(level) = i

))(()()1(|max( SPNLjbrcNLjnjjl j ∈∪∩<=+∩∉∩≤≤=
        ML(level) = l
        max_level = level
    Else
        max_level = level-1 
    End-If -Else
End-For
d = max_level

//Find a variable and set it to one while maintaining feasibility.
))(())(())(1(|min( SCNLjSPNLjNLjdMLjji ∈∪∩∈∩∩∉∩≤≤=

(SC – convex set defined by the set covering constraints)
If i exists
    NL(d) = i
    status = “solution found”
Else
    status = “solution not found”

End-If -Else
Return status

Algorithm Backward (d, NL, ML)
Input: d – current depth

NL – list of indices of non-zero variables for levels up to d
ML – list of max indices for levels up to d

Output: Updated d, and NL. (If the whole feasible region has been searched, 
d is set to zero.)

For level = d-1 to 0 decrement level
     If level = 0
         d = 0
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    Else 
)])[((])[())()1)(((|min( SPlevelNLjlevelNLjlevelMLjlevelNLji ∈<∪∩<∉∩≤≤+=

             (where ][ levelNL <  is the first (level-1) elements of .NL )

       If i exits
           NL(level) = i
           d = level
           level = -1 
       End-If
   End-If -Else
End-For

Algorithm ENUM-SPC will be invoked as many times as the number of cuts generated in the 
solution of the attacker’s or defender’s problem. ENUM-SPC will skip the initialization step 
except during the first call and when it fails to find a feasible solution by searching from the 
previous solution. Testing has showed that ENUM-SPC was about 10 times faster than the general IP 
approach.

5 IMPLEMENTATION AND C OMPUATIONAL RESULTS

We implemented the algorithms described in Section 4 in Visual C++, while utilizing the open 
source code Common Optimization Interface for OR (COIN-OR) [17]. CLP (COIN’s linear 
program solver) was used to solve the OPF problem repeatedly and incrementally. The integer 
program solver was constructed using COIN-OR’s SBB (Simple Branch and Bound) package.

All test runs in this section were performed on the IEEE Reliability Test System (RTS) One Area 
Network [15, 18]. The RTS One-Area Network consists of 2 substations, 24 buses, 33 generators 
and 38 lines. Power demands on a bus are divided into groups: one for residential users and the 
other for commercial users.

The resources required for the attacker to disable a link, bus, and substation are 1, 2, and 3, 
respectively. One unit of resource may include a combination of manpower, equipment and 
money. To defend the same network elements, the defender will need the same number of units 
of resources. The defender’s objective is to minimize the amount of loss due to attacks.

Test runs were conducted on a Windows 2000 machine (2.4GHz speed and 1GB memory), and 
the code was not optimized for performance. The set packing/covering problem was solved with 
the ENUM-SPC algorithm. 

One parameter that affects the performance a great deal is the budget constraint for both the 
attacker and the defender. As more resources are available, the number of feasible attack/defense 
strategies grows exponentially. In one test case, the attacker’s budget is fixed at 2 and defender’s 
budget varies. The computational results are summarized in Table 3.
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Table 3 Summary Results for Attack Budget of Two Units

Defense 
Budget

Solution Time 
(min)

Optimal Obj 
Value ($)

0 3 346678
1 3 341075
2 3 236467
3 3 236467
4 4 233359
5 5 233359
6 6 232170
7 7 232170
8 25 232170
9 62 219859
10 1322 219859

Table 3 reveals that a defense budget of two achieves a cost-effective level of performance. Any 
defense budget above two would result in marginal decrease in system loss. In practical terms, 
this means that it is very important to protect a few strategic elements if their failure would inflict 
a great loss on the network. Table 3 also shows an exponential growth in solution time as the 
defense budget increases past a value of seven. 

6 FUTURE RESEARCH

The limiting factor for the real world application of the solution method in this paper is slow 
solution time for large-sized problems. Most computational time was spent solving the attack and 
defense SPC problems. They have to be solved repeatedly, and each time the number of 
constraints will increase by one, eventually resulting in an exponential growth in demand for 
computation power. If the OPF solution process could generate many cuts (instead of one) in one 
iteration, the number of times that the attacker SPC problem has be solved would be greatly 
reduced. As mentioned in Sec. 4, CLP was not suited for generating many cuts. To this end, we 
would need a specialized LP solver that uses a 2-phase approach (CLP uses a 1-phase approach) 
to arrive at feasibility and then moves slowly to optimality by traversing as many basic feasible 
points as possible.

Another approach for generating many cuts is to use an LP solver that can find all (alternative) 
basic optima. Each optimal point would be used to create one cut for the attacker’s SPC problem. 
Even though finding all basic optima is a tough combinatorial problem, the effort may well offset 
the computation burden of solving many SPC problems.

Solution of the SPC problem itself also needs improvement. The ENUM-SPC algorithm will not 
solve a large-size model. More intelligent bounding rules are needed in the search process. 
Parallel algorithms could be explored. For example, many different branches of the branch and 
bound tree could be explored simultaneously. A higher level of parallelism permits many 
attack/defense plans to be evaluated concurrently. 

The modeling and solution methods of this paper can be readily applied to other types of 
infrastructure systems such as oil and gas pipelines, transportation, water distribution and 
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telecommunication networks. While the defender’s response model will differ for these types of 
networks, the defense and attack decision models will be very similar. The solution method in this 
paper can be applied to many types of networks.
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